Difference between revisions of "Упътване за LaTeX"
| Line 31: | Line 31: | ||
- <math> | - <math> | ||
\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}} | \frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}} | ||
| − | {\sqrt[{2007}]{}} </math> | + | {\sqrt[{2007}]{ \frac{1}{} }} </math> |
Revision as of 16:41, 8 June 2011
Примерни формули:
\frac{1}{2} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}
\frac{1}{1+\frac{1}{1+\frac{1}{2}}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{1+\frac{1}{1+\frac{1}{2}}}}
\sqrt{2} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{2}}
\sqrt[3]{2} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt[3]{2}}
x\ge 1 - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\ge 1}
x\le 1 - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\le 1}
1\le x\le \pi - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\le x\le \pi}
x\neq 0 -
x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1}}
\triangle ABC \approx \triangle A_1B_1C_1 - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \triangle ABC \approx \triangle A_1B_1C_1}
\sum_{cyclyc} ab = ab+bc+ca - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{cyclyc} ab = ab+bc+ca}
\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}}
\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} }
\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}{\frac{1}{\sum_{cyclyc}a^{bc}}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}} {\sqrt[{2007}]{ \frac{1}{} }} }