Махало

From Ilianko
Движение на махало под въздействие на гравитацията

Цел: Създаване на връзки между диференциране и диференциални уравнения.

Постановка: Математическо махало. (Съпротивлението на въздуха се пренебрегва). Да се намери зависимостта на махалото спрямо времето, т.е. функцията на движение на махалато.

Анализ: Във всеки момент махалото се движи с различна скорост и ускорение, зависещи от ъгъла на отклонение на махалото.

Производни, разстояние, скорост и ускорение.

Движението на махалото се извършва по окръжност с радиус равен на дължината на нишката, на която е окачено махалото. От тук, следва че:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = \ell \theta }

За да изразим скоростта ползваме първата производна (изменението на разстоянието за единица време). Изменя се само ъгълът, а дължината на нишката е константа и се запазва:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v = {ds\over dt} = {{d\ell\theta}\over dt}= \ell {d\theta\over dt}}

По да изразим ускорението, използваме втората производна

(1)

Сили действащи на махалото

Под внимание се взема само силата действаща по посока на движението. Допирателната по окръжността на движение (тангенциалната сила ( танго -> допир)). Перпендикулярната сила (нормалната ) се неутрализира.

От II закон на нютон Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = ma\,}

За махалото Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = gm \sin\theta = -ma\, => a = -g\sin\theta\, } (2)

Диференциално уравнение на махало

От (1) и (2) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle => -g\sin\theta = \ell{d^2\theta\over dt^2} <=> \ell{d^2\theta\over dt^2} + g\sin\theta = 0 }

Решаване на диференциалното уравнение

Има два подхода при решаване на диференциални уравнения, аналитичен и числен. При конкретното уравнение са възможни и двата подхода, но аналитичният метод може да се използва за Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta < 20^{\circ}} . В този случай диференциалното уравнение ще се преобразува в линейно от втори ред.

Аналитично решение

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell{d^2\theta\over dt^2} + g\sin\theta = 0 <=> \ell{d^2\theta\over dt^2} + g\theta = 0, \theta < 20^{\circ}}

Полагаме Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ {\theta} = {y} } , от тук Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell{y''} + {g}{y} = 0 } - хомогенно диференциално уравнение от 2-ри ред

Уравнението е от вида Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ ay''+by'+cy = 0} , затова лесно могат да се намерят решения във вида Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ y = c_{1} e^{r_{1} x} + c_2 e^{r_{2} x} } , където за r се решава уравнението Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ ar^{2}+br+c=0} , a именно:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell r^2 + g = 0 }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r = \pm j \sqrt{\frac{g}{l}} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = c_{1} e^{-j \sqrt{\frac{g}{l}} t} + c_2 e^{j \sqrt{\frac{g}{l}} t}}