Числено интегриране

From Ilianko

В числения анализ, числено интегриране определя група от алгоритми за намиране стойността на определен интеграл. Понятието се използва и при численото решаване на диференциални уравнения.

Идеята на численото интегриране е функцията f(x) да се приближи с подходяща функция φ(x), която по-лесно може да се интегрира. , където:

  • може да се интегрира точно
  • e остатъка (грешката - residual)

Най-често φ(x) е интерполационен полином построен по някакви възли в интервала за .

Числените методи за интегриране се налага да се използват:

  • Когато не съществува примитивна функция за f(x) (интегралът не се изразява с елементарни функции)
  • когато примитивната функция за f(x) е много сложен израз

Ако f(x) е плавно изменяща се функция, която може да се интегрира в малък брой измерения и има определени гранични стойности, съществуват редица методи с различна степен на точност за апроксимиране на интеграла .


Представяме интеграла по следния начин: .

Формули на Нютон-Коутс за числено интегриране

Пример. Да се пресметне по формулата на десните правоъгълници Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{2}^{3}{\frac {ln(x)}{x}}\,dx,n=10}

Решение. По условие


Метод на правоъгълниците

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle h={\frac {b-a}{n}}={\frac {3-2}{10}}=0.1}

Метод на правоъгълниците

Съгласно Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle I\approx \int _{a}^{b}=\int _{x_{0}}^{x_{1}}+\int _{x_{1}}^{x_{2}}+...+\int _{x_{n-1}}^{x_{n}}=y_{0}h+y_{1}h+...+y_{n-1}h=h\sum _{i=0}^{n-1}y_{i}}

x = {2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3}

y = {0.346574, 0.353303, 0.35839, 0.362134, 0.364779, 0.366516,0.367504, 0.367871, 0.367721, 0.367142, 0.366204}.

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle I\approx h\sum _{i=0}^{n-1}y_{i}=0.362193}

Аналитично решение

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{2}^{3}{\frac {log(x)}{x}}dx=1/2(log^{2}(3)-log^{2}(2))\approx 0.363248}

Решение с Матлаб

h = 0.1 % step
m = 0; % sum
for i = 2:h:3-h
m = log(i)/i + m
end
I = m*h
I =  0.36219

Оценка на грешката

Грешка от интегриране: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \vert r_{0}\vert \leq \left|\int _{x_{0}}^{x_{1}}R_{0}\,dx\ \right|\leq M_{1}\left|\int _{x_{0}}^{x_{1}}(x-x_{0})\,dx\ \right|=M_{1}{\frac {(x-x_{0})^{2}}{2}}{\Bigg |}_{x_{0}}^{x_{1}}=M_{1}{\frac {h^{2}}{2}}=O(h^{2})}

Сумарна грешка:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle R\leq n*M_{1}{\frac {h^{2}}{2}}=M_{1}{\frac {h(b-a)}{2}}}



Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle M_{1}=\max \limits _{[2,3]}\vert f'(\xi )\vert }

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f={\frac {ln(x)}{x}}} за Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f'={\frac {1-ln(x)}{x^{2}}}}

Максималната стойност в [2,3] на Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f'={\frac {1-ln(x)}{x^{2}}}} е при x = 2

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle R=M_{1}{\frac {h(b-a)}{2}}=0.077*0.1/2=0.004}

Анализ

Разликата от аналитичното решение и численото решение е Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0.3632-0.3621=0.0011} , което е в рамките на максималната грешка.

Формула на трапеца

Геометрично извеждане

Идеята на геометричното извеждане е да замести площта под кривата y = f(x) за x = a до х = b с площта на трапец ограничена от точките (a, 0), (b, 0), [a, f (a)], и [b, f (b)].

Метод на трапеца

Правилото на трапеца няма как да е точно за големи интервали, но ако разглежданият интервал се раздели на по-малки интервали и се сумират техните стойности ще се получи сравнително точно заместване. Ако функцията f има втора производна то грешката от интегриране намалява с , където h e големината на интеграла.

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{a}^{b}f(x)dx\approx h\left({\frac {f(x_{0})}{2}}+f(x_{1})+\dots +f(x_{n-1})+{\frac {f(x_{n})}{2}}\right)}

Аналитично извеждане

грешка на приближението Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle R_{1}(x)={\frac {f''(\xi )}{2}}(x-x_{0})(x-x_{1})}

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle |R_{1}(x)|\leq {\frac {M_{2}}{2}}\left|(x-x_{0})(x-x_{1})\right|} , където

Интегрираме в интервала

Failed to parse (syntax error): {\displaystyle \begin(align) \\ & \approx \frac{y_0}{-h}\int_{x_0}^{x_1} (x-x_1) \,dx + \frac{y_1}{h}\int_{x_0}^{x_1} (x-x_0) \,dx = \\ \end(align) & = \frac{y_0}{-h} \frac{(x-x_1)}{2} \Bigg |_{x_0}^{x_1} + \frac{y_1}{h} \frac{(x-x_0)^2}{2} \Bigg |_{x_0}^{x_1} = h \frac{(y_0+y_1)}{2} }

Failed to parse (syntax error): {\displaystyle \begin I \approx \int_{x_0}^{x_1} L_1 (x)\,dx = \int_{x_0}^{x_1} \left ( y_0 \frac{x-x_1}{-h} +y_1 \frac{x-x_0}{h} \right ) \,dx = \\ \approx \int_{x_0}^{x_1} y_0 \frac{x-x_1}{-h} \,dx + \int_{x_0}^{x_1} y_1 \frac{x-x_0}{h} \,dx = \\ = a^2+2ab+b^2 \\ \end }

Постановка

Решение

Грешка

Анализ

Формула на Симпсън

Постановка

Решение

Грешка

Анализ