Числено интегриране

From Ilianko
Revision as of 13:47, 5 January 2013 by Anko (talk | contribs) (→‎...)

В числения анализ, числено интегриране определя група от алгоритми за намиране стойността на определен интеграл. Понятието се използва и при численото решаване на диференциални уравнения.

Идеята на численото интегриране е функцията f(x) да се приближи с подходяща функция φ(x), която по-лесно може да се интегрира. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \phi(x) + r(x)} , където:

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x)} може да се интегрира точно
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r(x)} e остатъка (грешката - residual)

Най-често φ(x) е интерполационен полином построен по някакви възли в интервала Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} за Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} .

Числените методи за интегриране се налага да се използват:

  • Когато не съществува примитивна функция за f(x) (интегралът не се изразява с елементарни функции)
  • когато примитивната функция за f(x) е много сложен израз

Ако f(x) е плавно изменяща се функция, която може да се интегрира в малък брой измерения и има определени гранични стойности, съществуват редица методи с различна степен на точност за апроксимиране на интеграла .

Тогава:



Друг подход е следният: Представяме интеграла по следния начин:

(1) .

Пример. Да се пресметне по формулата на десните правоъгълници Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_2^3 \frac{ln(x)}{x}\,dx , n = 10 }

Решение. По условие Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b] = [2,3]; n=10}

...

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h = \frac{b - a}{n} = \frac{3-2}{10} = 0.1}

Съгласно Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I \approx \int_{a}^{b} = \int_{x_0}^{x_1} + \int_{x_1}^{x_2} + ... + \int_{x_{n-1}}^{x_n} = y_0 h + y_1 h +...+ y_{n-1} h = h \sum_{i=0}^{n-1} y_i}

x = {2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3}

y = {0.346574, 0.353303, 0.35839, 0.362134, 0.364779, 0.366516,0.367504, 0.367871, 0.367721, 0.367142, 0.366204}.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I \approx h \sum_{i=0}^{n-1} y_i = 0.362193}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_2^3 \frac{log(x)}{x} dx = 1/2 (log^2(3)-log^2(2)) \approx 0.363248}

Оценка на грешката