Упътване за LaTeX

From Ilianko
Revision as of 22:01, 9 December 2012 by Anko (talk | contribs)

Сайтът поддържа Latex синтаксис за въвеждане формули, а иначе използването на Latex, като текстообработваща среда е друг въпрос...

Примерни формули:


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} \frac{1}{2}


- \frac{1}{1+\frac{1}{1+\frac{1}{2}}}


\sqrt{2}


\sqrt[3]{2} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt[3]{2}}


x\ge 1 - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\ge 1}


x\le 1 - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\le 1}


1\le x\le \pi - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\le x\le \pi}


x\neq 0 - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\neq 0}


x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1\ge x_2\ge x_{2007}\ge x_{2007}^n\ge x_{2008}^{n+1}}


\triangle ABC \approx \triangle A_1B_1C_1 - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \triangle ABC \approx \triangle A_1B_1C_1}


\sum_{cyclyc} ab = ab+bc+ca - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{cyclyc} ab = ab+bc+ca}


\sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{cyclyc}\frac{a}{bc} = \frac{a}{bc}+\frac{b}{ca}+\sum_{cyclyc}a^{bc}\frac{c}{ab}}


\sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{\infty}\frac{1}{x_i} = \frac{\pi^2}{10} }


\frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[x_{2007}{\frac{1}{\sum_{cyclyc}a^{bc}}} - Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sum_{i=1}^{n}\sqrt{x_i+\frac{1}{\sqrt{x_i}+1}}}{\sqrt[{2007}]{ \frac{1}{ \sum_{cyclyc}a^{bc}} }} }

Връзки:

  1. Упътване LaTex
  2. http://ilianko.com/files/short-math-guide.pdf